JOIN
能不能使用 JOIN
驱动表:左表
被驱动表:右表
1 | CREATE TABLE `t1` |
Index Nested-Loop Join NLJ
1 | SELECT * |
- 从表 t1 中读入一行数据 R
- 从数据行 R 中,取出 a 字段到表 t2 里去查找;
- 取出表 t2 中满足条件的行,跟 R 组成一行,作为结果集的一部分;
- 重复执行步骤 1 到 3,直到表 t1 的末尾循环结束。
这个过程是先遍历表 t1,然后根据从表 t1 中取出的每行数据中的 a 值,去表 t2 中查找满足条件的记录。在形式上,这个过程就跟我们写程序时的嵌套查询类似,并且可以用上被驱动表的索引,所以我们称之为“Index Nested-Loop Join”,简称 NLJ。
怎样选择驱动表
在这个 join 语句执行过程中,驱动表是走全表扫描,而被驱动表是走树搜索。
假设被驱动表的行数是 M。每次在被驱动表查一行数据,要先搜索索引 a,再搜索主键索引。每次搜索一棵树近似复杂度是以 2 为底的 M 的对数,记为 log2M,所以在被驱动表上查一行的时间复杂度是 2log2M。
假设驱动表的行数是 N,执行过程就要扫描驱动表 N 行,然后对于每一行,到被驱动表上匹配一次。
因此整个执行过程,近似复杂度是 N + N2*log2M。
显然,N 对扫描行数的影响更大,因此应该让小表来做驱动表。
- 使用 join 语句,性能比强行拆成多个单表执行 SQL 语句的性能要好;
- 如果使用 join 语句的话,需要让小表做驱动表。
Block Nested-Loop Join BNL
1 | SELECT * |
被驱动表上没有可用的索引,算法的流程是这样的:
- 把表 t1 的数据读入线程内存 join_buffer 中,由于我们这个语句中写的是 select *,因此是把整个表 t1 放入了内存;
- 扫描表 t2,把表 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回。
因为受到 join_buffer 限制,如果驱动表数据过大,执行过程就变成了:
- 扫描表 t1,顺序读取数据行放入 join_buffer 中,放完第 88 行 join_buffer 满了,继续第 2 步;
- 扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回;
- 清空 join_buffer;
- 继续扫描表 t1,顺序读取最后的 12 行数据放入 join_buffer 中,继续执行第 2 步。
得出结论:应该让小表当驱动表。
小表是什么?
过滤条件后,数量少的表为小表
举例:
假设 A 表千万条,B 表百万行
在不设置过滤条件直接 JOIN 时,此时 B 表为小表
1
SELECT * FROM B INNER JOIN A ON B.name = A.name;
在设置过滤条件后
1
SELECT * FROM A INNER JOIN B ON A.name = B.name WHERE A.age <= 10;
此时 A 表仅剩 10W 数据,这里的 A 表为小表
小结
通过对 Index Nested-Loop Join 和 Block Nested-Loop Join 两个算法执行过程的分析,我们也得到了文章开头两个问题的答案:
- 如果可以使用被驱动表的索引,join 语句还是有其优势的;
- 不能使用被驱动表的索引,只能使用 Block Nested-Loop Join 算法,这样的语句就尽量不要使用;
- 在使用 join 的时候,应该让小表做驱动表。
对之前的错误反省
在之前没有正确的理解 JOIN 的原理,错误的认为:如果右表数据非常少时,使用 IN 的方法会更快,其实不然,这样会生成临时表,导致占用更多的性能,大家引以为戒